Effects of Performance Enhancing Drugs on the Cardiovascular System

Dr. Azad Ghuran MB ChB (Edin), MRCP, MD (Edin), FESC Consultant Cardiologist

www. hertslondoncardiology.co.uk

History

- Stories date back thousands of years to Ancient Olympic games
- Ground horse hooves and sheep testicles • In Chinese traditional medicine to bolster male body.
 - deer antler
 - tiger bone
 - bear gall bladder
 - ginseng and other roots
- Athletes in Late 19th/Early 20th century Caffeine and strychnine
- Danish cyclist death in 1960 Olympic game International Olympic Committee came out with first list of prohibited drugs.

Sports Performance- Skill, Strength, Stamina and Recovery Effects of Performance Enhancing Drugs on the Cardiovascular System Skill Strength Anabolic Androgenic Steroids Human Growth Hormone and IGF1 Erythropoietin **Stimulants** Beta blockers Diuretics Endurance-based sport (long distance or duration) Skill-based sport ver-based sport (lifting, throwing target shooting boxing, sprinting)

Performance Enhancig Drugs and The CVS

Case studies

- Cose studies
 Postmortem studies
 Animal models
 Physiological effects are confounded by:
 - Self-reporting unreliable Different dosing levels
 - Different exposure duration Quality of products •
 - Multiple drug use

	50% of at Adaptation of Body fat loss "	Androgenic S hletic doping muscle size a cutter"	nd strength	Androgen doping direct Natural, synthetic, designer, naturaoutical anardogens Indirect Indire
	only used urally and ompounds		tered Anabolic Steroid ral compounds	LH
Trade names	Generic names	Trade names	Generic names	• V
Dianabol	Methandrostencione	Deca-Durabolin	Nandrolone decanoate	
Anawar	Oxandrolone	Delatestryl	Testosterone enanthate	Testis
	Oxymetholone	Depo-Testosterone	Testosterone cypionate	
Anadrol		Durabolin	Nandrolone phenylpro-	
	Stanozolol	Durabolin	pionate	
Anadrol	Stanozolol Ethylestrenol	Primobolan Depot		↓

Anabolic Androgenic Steroids

Hypertension - Controversial

- Higher at rest and during exercise. Adjusted for weight and bicept circumference no difference.
- difference. - ABPM. No difference with controls. ?less diurnal variation
- Affect corticosteroid/renin production

Riebe D et al. The bload pressure response to exercise in anabalic steroid users. Med Sci Sports Exerc. 1992 Jun;24(6):633-7. J Clin Thamacol. 1996 Dec;36(12):1132-40. Patolini P et al. Cardiovascular prefact anabalic, steroids in weight-trained subjects. J Clin Pharmacol. 1996 Dec;36(12):1132-40. Cheshlaghi. F et al. Cardiovascular manifestations of anabalic steroids in association with demographic variables in body building athl Res Med Sci. 2017. Be2021:156-3.

Anabolic Androgenic Steroids

Lipid metabolism – conflicting data

- \uparrow Total cholesterol, \uparrow LDL, \downarrow HDL
- Increase hepatic triglyceride lipase activity

Predispose to premature atherosclerosis and CAD/strokes

Placebo *	Anabolic Androgenic Steroids
array Array	Cardiac Electrical Effects
↑ 0T = 256 ms	AAS shortens the QT interval and increases the densities of inward and delayed rectifier potassium currents in animal models
JT = 177 ma	
	*Liu XK et al. In vivo androgen treatment shortens the QT interval and increases the densit inward and delayed rectifier potassium currents in orchiectomized male rabbits. Cardiovass 2003 Jan;57(1):28-36.
QT = 235 ms	Fulop L et al. Effects of sex hormones on ECG parameters and expression of cardiac ion cha in dogs. Acta Physiol 2006, 188, 163–171

Table 1. Body Size va	riables, Blood F	ressures, and El Con	lectrocardiograp itrols	nic Parameters	, or the bodyo	
	Group A	Group B	Group C		P value	
	(n = 90)	(n = 86)	(n = 79)	A versus B	A versus C	B versus C
e (years)	31.4 ± 5	32.1 ± 4.6	33 ± 6	0.71	0.83	0.64
eight (cm)	178 ± 5	175 ± 8	179 ± 6	0.41	0.96	0.57
eight (kg)	76 ± 9	79 ± 8	96 ± 8	0.53	0.001	0.003
ody surface area (m ²)	1.93 ± 0.11	1.98 ± 0.14	2.19 ± 0.16	0.69	0.021	0.035
leart rate (bpm)	78 ± 10.3	69 ± 8.5	68 ± 8.9	0.07	0.073	0.59
ystolic blood	130 ± 10	132 ± 11	135 ± 11	0.59	0.23	0.25
pressure (mmHg) Diastolic Blood	80 ± 8	78 ± 12	82 ± 10	0.35	0.27	0.39
Pressure (mm Hg)	00 ± 0	70 ± 12	62 ± 10	0.55	0.27	0.59
Tc interval (ms)	418 ± 23.6	422 ± 24.5	367 ± 17.1	0.61	0.001	0.001
	A novel predictor	r of androgen abu	use in strength tra	ined athletes.	Ann Noninvasiv	ve Electrocardiol
MA. Short QT interval: /	A novel predictor arison of Electr	r of androgen abu	use in strength tra al Features of A	ined athletes.	Ann Noninvasiv Nonuser Body	ve Electrocardiol
MA. Short QT interval: / Table 3. Comp (milliseconds)	arison of Election	r of androgen aburocardiographic Nonuser (n = 1 370.3 ± 22.5	use in strength tra al Features of A	AS User and I AS User and I AAS User (421.1 ±	Ann Noninvasiv Nonuser Body n = 15) 22.7	ve Electrocardiol ybuilders P Val <0.0
MA. Short QT interval: / Table 3. Comp (milliseconds) d (milliseconds)	A novel predictol arison of Electi AAS	r of androgen aburocardiographic Nonuser (n = 1 370.3 ± 22.5 39.5 ± 7.9	use in strength tra al Features of A	AS User and I AS User and I AAS User (421.1 ± 57.9 ±	Ann Noninvasiv Nonuser Body n = 15) 22.7 7.1	ve Electrocardiol ybuilders P Val <0.0 <0.0
MA. Short QT interval: / Table 3. Comp (milliseconds) d (milliseconds)	A novel predictol arison of Electi AAS	r of androgen aburocardiographic Nonuser (n = 1 370.3 ± 22.5	use in strength tra al Features of A	AS User and I AS User and I AAS User (421.1 ±	Ann Noninvasiv Nonuser Body n = 15) 22.7 7.1	ve Electrocardiol ybuilders P Val <0.0 <0.0 <0.0
MA. Short QT interval: / Table 3. Comp [(milliseconds) Id (milliseconds) IT	A novel predictol arison of Electi AAS	r of androgen aburocardiographic Nonuser (n = 1 370.3 ± 22.5 39.5 ± 7.9	use in strength tra al Features of A	AS User and I AS User and I AAS User (421.1 ± 57.9 ±	Ann Noninvasiv Nonuser Body n = 15) 22.7 7.1 41.3	ve Electrocardiol ybuilders P Val <0.0 <0.0
MA. Short QT interval: / Table 3. Comp (milliseconds) d (milliseconds) T Id	A novel predictor arison of Electr AAS	r of androgen abuto cocardiographic Nonuser (n = 1 370.3 ± 22.5 39.5 ± 7.9 395.6 ± 42.7	use in strength tra al Features of A	AS User and 1 AS User and 1 AAS User (421.1 ± 57.9 ± 459.7 ±	Ann Noninvasiv Nonuser Body n = 15) 22.7 7.1 41.3 9.4	ve Electrocardiol ybuilders P Val <0.0 <0.0 <0.0
MA. Short QT interval: / Table 3. Comp (milliseconds) d (milliseconds) T Id S (milliseconds)	A novel predictor arison of Electr AAS	r of androgen aburocardiographic Nonuser (n = 1 370.3 ± 22.5 39.5 ± 7.9 395.6 ± 42.7 42.1 ± 7.9	use in strength tra al Features of A	AS User and AS User and AAS User (421.1 ± 57.9 ± 459.7 ± 65.5 ±	Ann Noninvasiv Nonuser Body n = 15) 22.7 7.1 41.3 9.4 9.1	ve Electrocardiol ybuilders P Val <0.0 <0.0 <0.0 <0.0
MA. Short QT interval: / Table 3. Comp (milliseconds) d (milliseconds) T Id S (milliseconds) (milliseconds)	A novel predictol arison of Electr AAS	rof androgen abu rocardiographic Nonuser (n = 1 570.3 ± 22.5 59.5 ± 7.9 595.6 ± 42.7 42.1 ± 7.9 93.8 ± 10.1	use in strength tra al Features of A	AS User and 1 AS User and 1 AAS User (421.1 ± 57.9 ± 459.7 ± 65.3 ± 97.3 ±	Ann Noninvasiv Nonuser Body n = 15) 22.7 7.1 41.3 9.4 9.1 25.3	ve Electrocardiol ybuilders P Val <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0
TA Short QT Interval: <i>J</i> Table 3. Comp (milliseconds) (milliseconds) a (milliseconds) milliseconds)	A novel predictol arison of Electr AAS	cof androgen abuto cocardiographic Nonuser (n = 1 570.3 ± 22.5 59.5 ± 7.9 595.6 ± 42.7 42.1 ± 7.9 93.8 ± 10.1 76.6 ± 18.6	use in strength tra al Features of A	ined athletes., AS User and I AAS User ($421.1 \pm$ $57.9 \pm$ $459.7 \pm$ $97.3 \pm$ $323.7 \pm$	Ann Noninvasiv Nonuser Body n = 15) 22.7 7.1 41.3 9.4 9.4 9.1 25.3 35.9	ve Electrocardiol ybuilders P Val <0.0 <0.0 <0.0 <0.0 NS
iroup A = sedentary men; IMA. Short QT Interval: / Table 3. Comp T (milliseconds) T (milliseconds) T (milliseconds) T (milliseconds) (milliseconds) T S (milliseconds) T -e >e -e/QT	A novel predictol arison of Electr AAS	rof androgen abu rocardiographic Nonuser (n = 1 370.3 ± 22.5 39.5 ± 7.9 595.6 ± 42.7 42.1 ± 7.9 93.8 ± 10.1 176.6 ± 18.6 194.7 ± 32.6	use in strength tra al Features of A	AS User and 1 AS User and 1 AAS User (421.1 ± 57.9 ± 459.7 ± 65.3 ± 97.3 ± 323.7 ± 352.8 ±	Ann Noninvasiv Nonuser Body n = 15) 22.7 7.1 41.3 9.4 9.1 25.3 35.9 9.2	ve Electrocardiol ybuilders P Val <0.0 <0.0 <0.0 NS <0.0 <0.0 <0.0 <0.0 <0.0

Physiologica Left ventricula	Ŭ		g induced	
able 3 Echocardiographic	data on the left ver Ex-users (n = 15)		Weightlifters (n = 15)	-
VVMM (g) VVMM per unit FFM (g/kg) EDD (rum) EDD per unit BSA (mm/m ²) EDD per unit BSA (mm/m ²) SD (mm) VS (mm) VS (mm) VS per unit BSA (mm/m ²) VFW (rum) VFW per unit BSA (mm/m ²) VFW per unit BSA (mm/m ²)	$\begin{array}{c} 232 \pm 42 \\ 112 \ (17) \\ 3.16 \ (0.53) \\ 54.0 \ (5.0) \\ 26.0 \ (2.0) \\ 0.74 \ (0.08) \\ 35.0 \ (4.5) \\ 11.5 \ (1.2) \\ 5.6 \ (0.6) \\ 0.16 \ (0.02) \\ 10.2 \ (0.5) \\ 0.14 \ (0.02) \end{array}$	281 (54)* 132 (23)* 3.32 (0.48) 56.5 (3.5) 26.5 (2.0) 0.67 (0.05)* 38.5 (2.5)* 12.3 (1.4) 5.8 (0.7) 0.15 (0.02) 11.4 (1.3)* 5.4 (0.6) 0.14 (0.01)	204 (44)±±± 93 (12)±±± 54.0 (26)±11±±± 54.0 (4.0) 55.0 (2.0)± 0.66 (0.09)±1 30.0 (1.0)±±±± 71 (0.5)±±±± 0.13 (0.02)±1±±± 4.3 (0.5)±1±±± 4.3 (0.5)±1±±± 4.1 (0.5)±1±±±±	Greater: • LV wall Txnss. • LVEDV • LV mass
Values are mean (SD). Jsers v ex-users: *p<0.05. Ex-users v weightlifters: †p<0.05; ††† Jsers v weightlifters: ‡p<0.05; ††† SSA, body surface area; EDD, end e ody mass; IVS, interventricular sept	p<0.001. diastolic internal diamete	r; ESD, end systolic		

Cardiac Structural Changes	Anabolic Androgenic Steroids
Left ventricular hypert	rophy - mechanism
	ptors Mediate Hypertrophy in ardiac Myocytes
	chael H. Lehmann, MD; Rebecca H. Ritchie, PhD; PhD; Glenn E. Green, MD; Rick J. Schiebinger, MD
Accordingly, we tested the hypothesis that cr and that myocytes respond to androgens by <i>Methods and Results</i> . We used reverse tra- receptor transcripts in multiple tissues and markers of hypertrophy in cultured rat m myocytes of male and female adult rats, nee Both testosterone and dhydrotestosterone determined by indices of protein synthesis at	nscription-polymerase chain reaction methods to demonstrate androgen (² H]phenylalanine incorporation and atrial natriuretic peptide secretion as socycts. Messenger RNA encoding androgen receptors was detected in onatal rat myocytes, rat heart, dog heart, and infant and adult human heart produced a robust receptor-specific hypertrophic response in myocytes.

	ructural Chan		polic Androgenic Steroids
	raphic data for AS and ?		
Measure	AS	Non-AS	
$E (m s^{-1})$	0.67 ± 0.11	0.77 ± 0.20	No sig. change in LVEF
$A (m s^{-1})$	0.54 ± 0.10	$0.38 \pm 0.61^{\dagger}$	
E:A [‡]	1.31 (0.50)	1.88 (0.35) [†]	↓ Diastolic function
S' (m s ⁻¹)	0.10 ± 0.01	0.10 ± 0.02	- increase in collagen cross link and a
$E' (m s^{-1})$	0.09 ± 0.02	$0.13 \pm 0.23^{\dagger}$	decrease in myocardial elastance
A' (m s ⁻¹)	0.10 ± 0.01	$0.07 \pm 0.01^{\dagger}$, , , , , , , , , , , , , , , , , , , ,
E':A' [‡]	0.99 (0.54)	$1.78~(0.46)^{\dagger}$	Conflicting reports
$E:E^{*\ddagger}$	7.19 (1.45)	5.66 (0.77)*	Connicting reports
ε (%)	-14.2 ± 2.7	$-16.6 \pm 1.9^{*}$	
Peak S SR (s ⁻¹)	-1.00 ± 0.23	$-1.14 \pm 0.11^{\dagger}$	
Peak E SR (s ⁻¹)	1.40 ± 0.38	1.65 ± 0.28	
Peak A SR (s ⁻¹)	1.02 ± 0.36	$0.72 \pm 0.25^{*}$	Proposed Mechanism
ratio, S' systolic tissu late diastolic tissue ve ratio. ε strain, SR strai	g, A late diastolic filling, I e velocity, E' early diasto elocity, E':A' early:late di n rate	olic tissue velocity, A'	 Alteration in myocyte calcium handling
* p < 0.05			
† p < 0.005			PJ Angell et al. Eur J Appl Physiol (2014) 114:921–928
* Data given as media	in (interquartile range)		

groups (data are mean ± SD)	functional measures	s in AS and NAS	
	AS	Non-AS	
Peak WT(mm)	13.0 ± 2.2	$9.4 \pm 1.3^{\dagger}$	
LV EDV (ml)	204.7 ± 25.4	$187.5 \pm 28.4^{*}$	
LV ESV (ml)	81.1 ± 14.3	70.6 ± 14.7	
LVM (g)	220 ± 45	$163 \pm 27*$	
Peak WT/FFM (mm g ^{-0.33}) [‡]	0.46 (0.11)	0.40 (0.09)	
LV EDV/FFM (ml g ⁻¹) [‡]	2.32 (0.46)	2.51 (0.28)	
LV ESV/FFM (ml g ⁻¹) [‡]	0.97 (0.30)	0.97 (0.16)	Cardiac MRI/Echo
LVM/FFM [‡]	2.56 (0.40)	2.43 (0.48)	
LV mass/volume [‡]	1.10 (0.26)	0.88 (0.16)*	
RV EDV (ml)	225.9 ± 40.8	199.8 ± 39.6	 Right Ventricular dilatation and
RV ESV (ml)	110.4 ± 24.7	$83.1 \pm 23.0^{\circ}$	reduced EF
RV EDV/FFM (ml g ⁻¹) [‡]	2.63 (0.72)	2.78 (0.62)	 Diastolic function
RV ESV/FFM (ml g ⁻¹) [‡]	1.27 (0.37)	1.15 (0.37)	
LV SV(ml)	122 ± 13	117 ± 16	
LV EF (%)	61 ± 3	63 ± 3	
RV SV (ml)	115 ± 19	117 ± 18	
RV EF (%)	51 ± 4	$59 \pm 5^{\dagger}$	
Fibrosis	Negative	Negative	

M. Lusetti et ai	Eur J Appl Physiol (2014) 114:921-928 DOI 10.1007/s00421-014-2820-2	
Table 1 shows main myocardial and coronar	ORIGINAL ARTICLE	
Histological findings	Ventricular structure, function, and	focal fibrosis in anabolic
Interstitial fibrosis Perivascular fibrosis within the left v Feineural fibrosis within the left v Fibroadipous metaplasia Contraction band necrosis Myocyte segmentation Intercalated disc widening	steroid users: a CMR study Peter J. Angell - Tetlik F. Ismail - Andrew Jabour - Gillian Smith - Annette Dubl - Riscardo Wage - Greg Whyte Daniel J. Green - Sanjay Prasad - Keith George	e.
Contracted myocytes/distended my Myocyte hypertrophy Inflammatory infiltration	Received: 12 September 2013 / Accepted: 8 January 2014 / Published or O Springer-Verlag Berlin Heidelberg 2014	nline: 28 January 2014
Coronary fatty streaks Coronary intimal and media thicke	Abstract Purpore Anabolic steroid (AS) misuse is widespread amongst recreational bodybuilders, however, their effects on the cardiovascular system are uncertain. Our aim was to document the impact of AS use on cardiac structure, fun- tion and the presence of focal fibrosis using the gold stand- ard cardiovascular magnetic resonance imaging (CMR). Methods: A corres-sectional cohort design was utilised	Results: AS smorts had higher shocking full volumitational (UV) mass (20.4 ± 6) compared to NAS (16.4 ± 27 g, p < 0.05) has this difference was removed when indexed to that free mass. As had a reduced right vorticular (RV) ejection fractional (SS) ± 4.6 vs. NAS 92 ± 5.8 ; p < 0.05) and a significantly lower flow relational <i>E</i> > 1.780.640 p < 0.051 predominantly due to predict times velocities with a single contraction.
Proposed Mechanism - Apoptotic cell death	with 2.1 strength-trained participants who underweat CMR imaging of the heat and speckle-tracking echocar- linggraphy. Thirteen participants (30 \pm 5 years) taking AS for at least 2 years and currently on a "minig"-cycle were compared with age and training-matched controls ($n = 8$; 29 \pm 6 years) who self-reported never having taken AS (NAS).	tion, Peak IV konginalinal strain was kower in AS users (AS $-142 \pm 2.73 ev$ vs. NAS $-166 \pm 19 ev$ $p < 0.50$). There was no evidence of focal flowsis in any participant. <i>Concentiors</i> n X So use was associated with significant LV hypertrophy, albeit in-line with greater fur-free mass, reduced LV strain, dissolic function, and reduced BV ejec- tion fraction in male hodybuilders. There was, however, no residence of flows fibrosis in any XS user.

Human Growth Hormone Insulin-like Growth Factor 1

Skeletal Muscle

- Amino acids transport into muscle cells and protein synthesis
- ↑ Lean muscle mass
 ↑ Interstitial fibrosis and fluid retention "simulate hypertrophy"
- ? ↑Muscle strength
- Alteration in lipid metabolism by lipolysis. ?↓ LDL and T. chol. ↑lipoprotein (a). No significant change TGL, HDL, apo B, apo A

Human Growth Hormone Insulin-like Growth Factor 1

Early phase hyperkinetic syndrome $\rightarrow \uparrow$ heart rate and systolic output.

Concentric cardiac hypertrophy \to diastolic dysfunction \to impaired systolic function \to heart failure.

Myocardium

 Myocyte hypertrophy. ↑ Collagen, fibrosis, cellular infiltration and myocyte necrosis → cardiomyopathy/arrhythmias

The American sprinter, Florence Griffith-Joyner (Flo Jo), purchased GH from fellow sprinter Darrell Robinson. She died at 38 years, post mortem was consistent with cardiomyopathy

Stimulants

Sympathomimetic Drugs

Ephedrine alkaloids - ephedrine, pseudoephedrine, norephedrine, methylephedrine, methylpseudoephedrine, norpseudoephedrine

Combined with Caffeine to enhance the cardiovascular effects

Headaches

Insomnia Stroke – haemorrhagic and thrombotic Cardiomyopathy MI/coronary spasm Supra- and ventricular arrhythmias Myocarditis Myocardial necrosis Death

Stimulants Caffeine and Sports Performance • No significant increase in the power, strength or physical ability • May improves endurance, by increasing resistance to fatigue or by increasing the activity of the nervous system Arrhythmias Hypertension (nonhabitual coffee drinkers) Dehydration Tremor

Dehydration Tremor Insomnia Nervousness Mental distraction (higher doses)

Stimulants prohibited by World Anti-Doping Agency

Yes A Yes M	Monoamine Monoamine Resp. stim. Monoamine Monoamine Monoamine
	Resp. stim. Monoamine Monoamine Monoamine
	Monoamine Monoamine Monoamine
	Monoamine Monoamine
	Monoamine
Yes M	
	Monoamine
	Monoamine
	Monoamine
Yes A	Monoamine
	Monoamine
	Resp. stim.
	Resp. stim.
	Monoamine
Yes M	Monoamine
	Monoamine
	Resp. stim.
Yes A	Monoamine
	Monoamine
	Yes A British Journal of Pharm

lame	Specified substance [®]	Metabolized to A/M ^b	Mode of action ⁴
amprofazone	Yes	Yes M	Analgesic
enbutrazate			Monoamine
encamfamin			Monoamine
encamine		Yes M	Monoamine
enetylline		Yes A	Monoamine
enfluramine			Monoamine
enproporex		Yes A	Monoamine
urfenorex		Yes M	Monoamine
eptaminol	Yes		Monoamine
ometheptene	Yes		Monoamine
evmethamfetamine	Yes		Monoamine
feciofenoxate	Yes		Nootropic
fefenorex		Yes A	Monoamine
tephentermine			Monoamine
tesocarb		Yes A	Monoamine
fethamphetamine (D-)		Yes A ^e	Monoamine
fethylenedioxyamphetamine			Monoamine
tethylenedioxymethamphet.			Monoamine
methylamphetamine	Yes		Monoamine
fethylephedrine ^d	Yes		Monoamine
fethylphenidate			Monoamine
todafinil			Monoamine
lkethamide	Yes		Resp. stim.
loffenefrine	Yes		Monoamine
lorfenfluramine			Monoamine
Ictopamine	Yes		Monoamine
Interamine	Yes		Monoamine
bilofrine	Yes		Monoamine
arahydroxyamphetamine		Note	Monoamine
emoline			
entetrazol			Resp. stim./GABA
hendimetrazine			Monoamine
henmetrazine			Monoamine
henpromethamine	Yes		Monoamine
hentermine			Monoamine
-Phenylpiracetam (carphedon)			Nootropic
olintane			Monoamine
ropylhexedrine	Yes		Monoamine
elegiline	Yes	Yes	MAOI
butramine	Yes	102	Monoamine
trychning			Glydne
uaminoheptane and other substances with a similar chemical	Yes		Monoamine

Strychnine - glycine receptor antagonist Rio 2016: Weightlifter Izzat Artykov stripped Bronze for doping Wight with generative stand advances Market with generative stand advances Wight with the stand advances of the stand advances with the stand advances of the standard sta

Beta-Blockers

- Prevent the binding of norepinephrine and decrease sympathetic nervous system activity
- May improve accuracy (for shooting sports, snooker, etc.)
- Decrease aerobic capacity but have no effect on strength, power, or muscular endurance
- Prolonged use can cause bradycardia, heart blockage, hypotension, bronchospasm, fatigue, and decreased motivation

Masking Agents

Diuretics

- Used to reduce body weight before a competition
- Masking agent to flush out traces of banned substances to avoid testing positive

Masking Agents

Diuretics

- Electrolyte imbalances arrhythmias
- Dehydration
- Impaired thermoregulation

Case 1

39 yr. old male admitted on the 20th July 2016 with a history of right-sided facial, arm and leg weakness, difficulties moving his lips and an expressive dysphasia. Two days earlier he complained of left-sided face and arm weakness that lasted 20 seconds. For the preceding three weeks he noticed that his vision was blurred.

An urgent CT – no significant findings.

ECG showed atrial fibrillation with a ventricular rate of 130 beats per minute.

He works as a personal trainer. Previously lost 12-14 stone (76-88 kg) over the preceding 3½ year period Using ephedrine, caffeine, anabolic androgenic steroids, thyroxine and caffeine

PMx: nil.

FHx: mother died of a stroke at age 57 which may be related to a clot originating in her leg. He has a sister with three miscarriages.

Case 1

Non smoker. Drinks alcohol occasionally and denies using any recreational drugs.

<u>HB mildly elevated at 171 gm/L</u> with a normal MCV, CRP, ferritin, TFT's, haemoglobin A1c, beta-2 microglobulin, ANA and anti-cardiolipin antibody. Although lupus anticoagulant screen was done it could not be interpreted given that he was on Apixaban. Creatinine was mildly elevated at 135 mmol/L, with sodium of 138 mmol/L, potassium 4.9 mmol/L and an eGFR of 51 ml/min, LDH was mildly elevated at 353 IU/L. He was negative for factor V Leiden.

His ventricular rate was adequately controlled on bisoprolol 10 mg daily. He was also commenced on Ramipril and the dose was slowly titrated up to 5 mg bd, and Apixaban 5mg BD

An inpatient echocardiogram demonstrated moderately dilated left ventricle (LVDD 6.5 cm, LVDS 4.97 cm) with significant LV systolic impairment. There was no significant valvular abnormalities. The right ventricular systolic pressure was 26 mmHg. Inferior vena-cava was dilated with poor inspiratory collapse.

Cardiac MRI Echo DC cardioversion

29 year male. Admitted in the early hours of the morning after awakening with acute onset heavy chest pain associated wit sweating.

Smoker. Denied recreational drugs. No FHx of IHD

PMHx: Nil. Admits to using Test 400 and Stanvar (oxandrolone and stanozol) Winstrol)

Paramedics ECG ST个 I, AvI, V5, V6.

Conclusion

- Doping in Sports have been around for centuries
- Some of the drugs/methods used can have significant and profound cardiovascular effects
- The pathophysiological mechanisms for the effects are not clearly understood.
- Current data are based on small studies, case reports and animal models.
- WADA exists to prevent unfair competitive sporting
 advantage and to protect the health of athletes